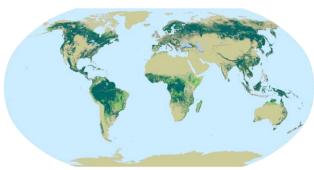
Observation des forêts en 3D Utilisation de données Lidar pour l'estimation de la ressource forestière et d'indicateurs de biodiversité

Marc Bouvier¹, Sylvie Durrieu¹, Richard Fournier², Frédéric Gosselin³, Jean-Matthieu Monnet⁴, Nathalie Morin², Henri Debise¹ et Jean-Pierre Renaud⁵

¹ Irstea – UMR TETIS, ² Université de Sherbrooke – CARTEL,

³ Irstea - UR EFNO, ⁴ Irstea - UR EMRG, ⁵ ONF


Contexte

Les forêts

- 30% des terres de la planètes
- Principal stock de carbone continental
- Réservoir de biodiversité

- Améliorer la planification des exploitations
- Gestion durable des forêts

Cartes des forêts , FAO 2006

- Faciliter les inventaires forestiers
- Acquérir de nouveaux paramètres forestiers

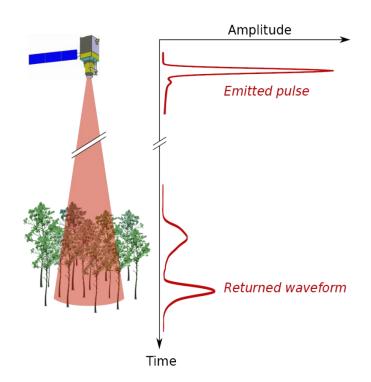
Princip

Principe du Lidar

Scanner 3D

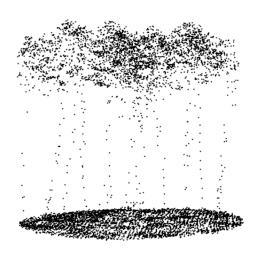
- LIDAR : Light Detection And Ranging
 - Système composé d'un émetteur laser + récepteur
 - IR, visible ou UV

Applications


- Télémètre
- Étude de l'atmosphère
- Cartographie
- ...

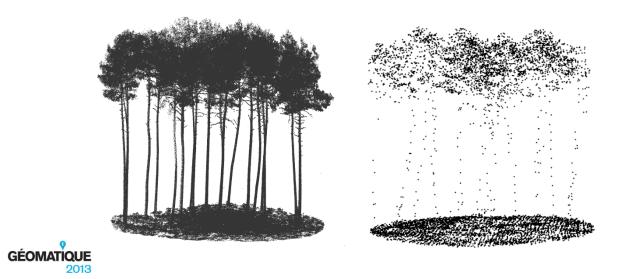
En forêt

- Pénétration à travers le couvert
- Estimation précise de la hauteur des arbres
- Informations sur la structure 3D des couverts forestiers



Différents types de Lidar

Lidar Aérien

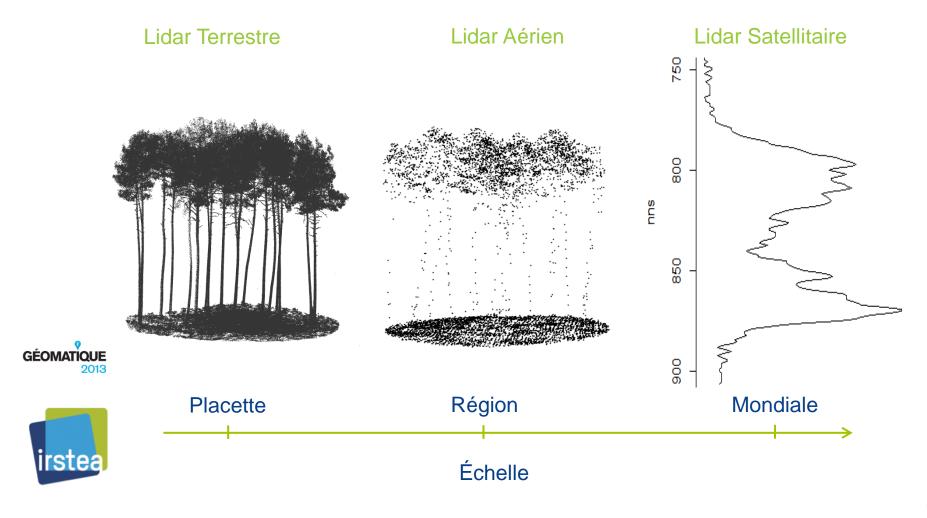

Région

Échelle

Différents types de Lidar

Lidar Terrestre

Lidar Aérien

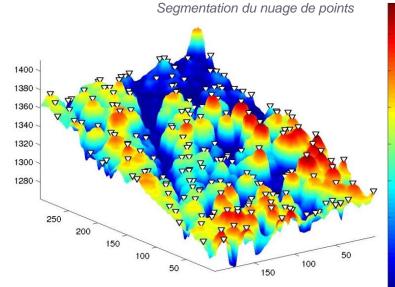


Placette Région

Échelle

Différents types de Lidar




Lidar aérien

Approches à l'arbre

- Segmentation des arbres
- Extraction des caractéristiques individuelles
 - Mesures directes : hauteur, diamètre de houppier
 - Estimation par des modèles : volume de tige, biomasse...
 - Classification résineux / feuillus

Limites de segmentation dans les peuplements complexes

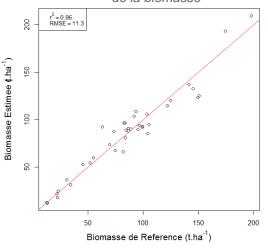
35

30

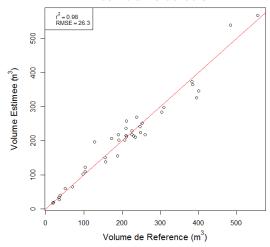
25

20

10


Lidar aérien Approche surfaciques

- Approche statistique
 - Inventaires terrain
 - Calibration et validation de modèles de prédiction
- Estimation de paramètres forestiers
 - Biomasse, volume de bois, surface terrière,...
- Développement de modèles d'estimation générique
 - Application peuplements complexes



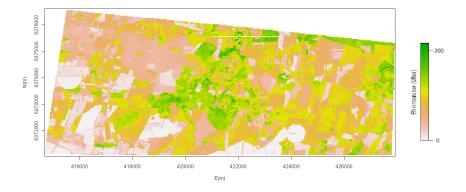
Calibration d'un modèle d'estimation de la biomasse

Calibration d'un modèle d'estimation du volume de bois

Lidar aérien

Cartographie des paramètres forestiers

Validation de la méthodologie à l'échelle du massif


Placettes d'inventaires terrain

Carte de biomasse

Limites:

- Positionnement
- Domaine de validité du modèle

- Le niveau potentiel de biodiversité est influencé par la structure de la végétation
 - Possibilité d'adopter des pratiques sylvicoles favorisant la biodiversité
 - Besoin de développer au préalable des modèles pour exprimer la relation potentiel de biodiversité / structure
- Intérêt du Lidar
 - Faciliter l'estimation de paramètres de structure
 - Tester l'influence de la structure des peuplements à différentes échelles

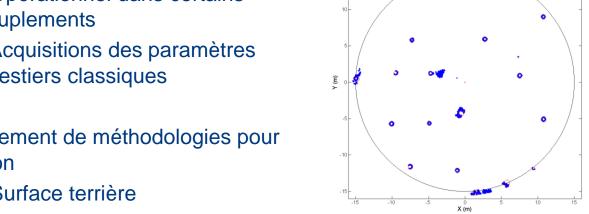
Domaine de recherche encore assez peu exploré

Notre objectif : évaluer l'apport des métriques Lidar / indicateurs de structure traditionnels dans des modèles existants

Lidar aérien Indicateurs de biodiversité

- Modèles bayésiens
 - Zilliox & Gosselin In Press Forest Ecology and Management
- Variables des modèles
 - Radiation solaire
 - Température
 - Topographie
 - PH
 - réserve en eau
 - Variables Lidar

- Richesse spécifique: héliophile / intermédiaire / sciaphile
- Abondance des espèces les plus représentées

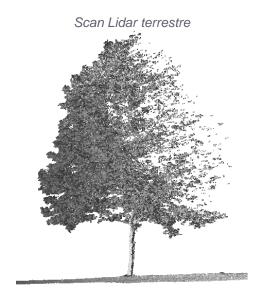


Lidar terrestre

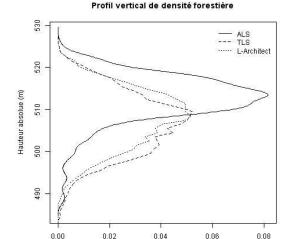
Un outil précieux pour améliorer les modèles Lidar aérien

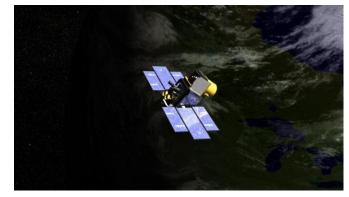
- Utilisé comme alternative aux mesures terrain manuelles
 - Opérationnel dans certains peuplements
 - Acquisitions des paramètres forestiers classiques
- Développement de méthodologies pour l'estimation
 - Surface terrière
 - Complexité structurelle
 - Taux de couvert
 - Densité de végétation

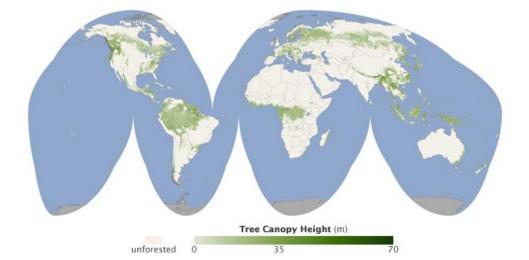
Extraction des diamètres des troncs



Lidar terrestre Relevés de placettes


- Difficultés liées au système de mesure:
 - Occlusion
 - Multi-scans
 - Méthodes de correction pour retrouver des profils de végétation ex: approches voxels
 - Accessibilité à la ressource

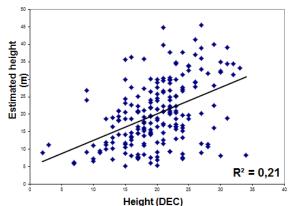



Densité forestière

Lidar satellitaire

- Ice, Cloud, and land Elevation Satellite
- Dédié à l'étude des calottes de glace
 - **2003 2010**
 - Proche-infrarouge (1064nnm)
 - Empreinte au sol de 70 m

Crédit: Nasa, vue d'artiste


Lidar satellitaire ICESat

Application du modèle d'estimation des hauteurs sur l'île de Mayotte

Limites

- Peuplements complexes
- Zones de reliefs

Height = Wave Extent - Trailing Edge

\$.A55.21 \$.A0.E1

Applications forestières

- Taille d'empreinte pas adaptée
- Qualité de la géolocalisation insuffisante
- Énergie du pulse pas toujours suffisante

Perspectives

Lidars spatiaux dédiés au suivi de la végétation

- Plusieurs projets de missions soumis ces dernières années auprès des agences spatiales (NASA, ESA, CNES, JAXA)
- LEAF à l'étude en France avec le support du CNES
 - Projet soumis à l'ESA en 2010 à l'appel à idée EE8
 - Toujours à l'étude (CNES & partenaires scientifiques Irstea Cesbio AMAP – CEA …)
 - Soutenu par des scientifiques de plusieurs pays
- Objectifs
 - Informations sur la structure 3D des forêts
 - Évaluation de la biomasse et de sa dynamique au niveau mondial
 - MNT

GÉOMATIOUE

Solution retenue : Couplage Lidar FW NIR avec un imageur multispectral

